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2 Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
3 Instituto de Ciencias Fı́sicas, UNAM, Cuernavaca, Mexico
4 Centro Internacional de Ciencias, Cuernavaca, Mexico

E-mail: francesco.calogero@uniroma1.it, francesco.calogero@roma1.infn.it and
leyvraz@fis.unam.mx

Received 4 July 2007
Published 9 October 2007
Online at stacks.iop.org/JPhysA/40/12931

Abstract
We introduce a new technique—characterized by an arbitrary positive
constant �, with which we associate the period T = 2π/�—to ‘�-modify’
a Hamiltonian so that the new Hamiltonian thereby obtained is entirely
isochronous, namely it yields motions all of which (except possibly for
a lower dimensional set of singular motions) are periodic with the same
fixed period T in all their degrees of freedom. This technique transforms
real autonomous Hamiltonians into �-modified Hamiltonians which are also
real and autonomous, and it is widely applicable, for instance, to the most
general many-body problem characterized by Newtonian equations of motion
(‘acceleration equal force’) provided it is translation invariant. The �-modified
Hamiltonians are of course not translation invariant, but for � = 0 they
reduce (up to marginal changes) to the unmodified Hamiltonians they were
obtained from. Hence, when this technique is applied to translation-invariant
Hamiltonians yielding, in their center-of-mass systems, chaotic motions with
a natural time scale much smaller than T, the corresponding �-modified
Hamiltonians shall display a chaotic behavior for quite some time before the
isochronous character of the motions takes over. We moreover show that
the quantized versions of these �-modified Hamiltonians feature equispaced
spectra.

PACS numbers: 02.30.Ik, 03.65.Ge, 05.45.Gg, 45.20.Jj, 45.50.Jf

1. Introduction

Recently, much research (see, for instance, [1–4]) has been devoted to the identification and
investigation of dynamical systems which are isochronous, featuring an open (hence fully
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dimensional) region in their phase space in which all their motions are completely periodic
(namely, periodic in all their degrees of freedom) with the same fixed period: for a review of
these developments, see [5, 6]. In this paper, we introduce a new technique characterized by
an arbitrary positive constant �. It allows us to ‘�-modify’ a Hamiltonian so that the new
Hamiltonian thereby obtained is entirely isochronous, yielding motions all of which (except
possibly for a lower dimensional set of singular motions) are periodic with the same fixed
period

T = 2π

�
(1)

in all their degrees of freedom. It transforms real autonomous Hamiltonians into �-
modified Hamiltonians which are also real and autonomous. It is widely applicable (as
shown below), but for definiteness we focus hereafter mainly on the—most general, except
for the requirement that it be translation invariant—nonrelativistic many-body problem,
characterized by Newtonian equations of motion (‘acceleration equal force’). The �-modified
Hamiltonian thereby obtained is of course not translation invariant, but for � = 0 it reduces
(up to marginal changes, see below) to the unmodified Hamiltonian it was obtained from.
Hence, when this technique is applied to a translation-invariant many-body problem yielding,
in its center-of-mass system, chaotic motions with a natural time scale TC , it is possible to
manufacture—via an assignment of the constant � entailing that the corresponding period T,
see (1), is much larger than this time scale, T � TC—an �-modified many-body problem
that shall display some kind of chaotic behavior for quite some time before the isochronous
character of all its motions takes over.

In section 2, we report the main findings of this paper: the new technique of �-modification
and its properties, including a terse discussion of the transient ‘chaotic’ phenomenology
outlined above and an illustration of our findings via a very simple, quite explicit example.
In section 3 we provide a terse treatment of these �-modified Hamiltonians in the quantal
context, demonstrating in particular their property to feature an equispaced spectrum with
spacing ��—each eigenvalue of which is of course generally infinitely degenerate. A terse
section 4 entitled ‘outlook’ concludes the paper.

2. Results

In this section 2 we report our results, after a preliminary introduction largely devoted
to establishing our notation. We mainly focus on the Hamiltonian characterizing the
standard nonrelativistic N-body problem—restricting attention for simplicity firstly to the
one-dimensional case with equal masses and outlining only later the extension to more general
Hamiltonians.

2.1. Preliminaries and notation

We write as follows (in self-evident notation) the (simplest version of the) Hamiltonian
characterizing the standard nonrelativistic N-body problem:

H(p, q) = 1

2

N∑
n=1

p2
n + V (q). (2)

Notation. N is an arbitrary positive integer (N � 2), and hereafter the index n runs from 1
to N unless otherwise indicated. For simplicity we set throughout the mass of the particles
to unity (and dimensions are supposed to be accordingly adjusted); the canonical coordinates
qn and momenta pn are the N components of the N-vectors q and p respectively, and the
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many-body potential energy function V (q) is essentially arbitrary, except for the requirement
of translation invariance,

V (q + a) = V (q). (3a)

In this formula, a denotes an arbitrary constant N-vector; for infinitesimal a, the corresponding
formula reads, of course,

N∑
n=1

∂V (q)

∂qn

= 0. (3b)

We hereafter denote with P the total momentum and with Q the (canonically conjugate)
center-of-mass coordinate:

P =
N∑

n=1

pn, Q = 1

N

N∑
n=1

qn. (4)

Thanks to the translation invariance property (3b),

[H,P ] = 0. (5)

Here and hereafter, the Poisson bracket [F,G] of two functions F(p, q) and G(p, q) of the
canonical variables is defined as follows:

[F,G] ≡
N∑

n=1

[
∂F (p, q)

∂pn

∂G(p, q)

∂qn

− ∂G(p, q)

∂pn

∂F (p, q)

∂qn

]
. (6)

Let us recall that the evolution of any function F(p, q) of the canonical coordinates p, q is
determined by the equation

F ′ = [H,F ], (7)

where the appended prime denotes differentiation with respect to the ‘timelike’ variable
corresponding to the evolution induced by the Hamiltonian H.

It is now convenient to introduce the ‘relative coordinates’ xn and the ‘relative momenta’
yn via the definitions

xn = qn − Q, yn = pn − P

N
. (8a)

Note that these are not canonically conjugated quantities, since [yn, xm] = δnm − 1/N , and
they are not independent since they obviously satisfy the property

N∑
n=1

xn =
N∑

n=1

yn = 0. (8b)

It is moreover convenient to introduce the relative-motion Hamiltonian h(y, x) via the
formula

h(y, x) = 1

2

N∑
n=1

y2
n + V (x) = 1

4N

N∑
n,m=1

(pn − pm)2 + V (q), (9a)

so that

H(p, q) = P 2

2N
+ h(y, x). (9b)

Note that to write the two versions of (9a), we used the identification V (x) = V (q) implied
by (8a) and (3a). Note moreover that this definition, (9a), of the relative-motion Hamiltonian
h(y, x) entails that it Poisson-commutes with both P and Q:

[P, h] = [Q,h] = 0. (9c)
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For completeness and future reference, let us also display the equations of motion implied
by the Hamiltonian H(p, q), see (2):

q ′
n = pn, p′

n = −∂V (q)

∂qn

, q ′′
n = −∂V (q)

∂qn

, (10a)

where (for reasons that will be clear below) we denote as τ the independent variable
corresponding to this Hamiltonian flow and with appended primes the differentiations with
respect to these variable:

qn ≡ qn(τ ), pn ≡ pn(τ); q ′
n ≡ ∂qn(τ )

∂τ
, p′

n ≡ ∂pn(τ )

∂τ
. (10b)

Hence, from (4) and (3b),

Q′ = P

N
, P ′ = 0, (11a)

yielding

Q(τ) = Q(0) +
P(0)

N
τ, P (τ) = P(0), (11b)

and from (8a) and (10a),

x ′
n = yn = ∂h(y, x)

∂yn

, y ′
n = −∂V (x)

∂xn

= −∂h(y, x)

∂xn

. (12)

Note that these equations have the standard Hamiltonian form even though, as mentioned
above, xn and yn are not canonically conjugated variables.

2.2. The isochronous Hamiltonian

The �-modified Hamiltonian H̃ (p̃, q̃;�) is now defined by the formula

H̃ (p̃, q̃;�) = 1

2




[
P̃ +

h̃(ỹ, x̃)

b

]2

+ �2Q̃2


 , (13a)

where b is an arbitrary constant (introduced for dimensional reasons: it has the dimensions of
a momentum), � is of course a positive constant and we introduced (perhaps unnecessarily)
the notation

h̃(ỹ, x̃) ≡ h(ỹ, x̃) = 1

2

N∑
n=1

ỹ2
n + V (x̃). (13b)

Here the superimposed tildes over the canonical coordinates and momenta, q̃n ≡ q̃n(t) and
p̃n ≡ p̃n(t), are introduced to emphasize that these variables evolve now according to the
�-modified Hamiltonian H̃ (p̃, q̃;�). Likewise the total momentum P̃ ≡ P̃ (t) and the center-
of-mass coordinate Q̃ ≡ Q̃(t), as well as the relative coordinates and momenta x̃n ≡ x̃n(t)

and ỹn ≡ ỹn(t), are now defined by formulae analogous to the previous ones:

P̃ =
N∑

n=1

p̃n, Q̃ = 1

N

N∑
n=1

q̃n, (14a)

x̃n = q̃n − Q̃, ỹn = p̃n − P̃

N
, (14b)
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and, as already indicated above, the corresponding independent variable is now denoted as
t (‘time’), and differentiations with respect to this variable will be denoted, as usual, by
superimposed dots.

It is now easily seen that they hold the following Poisson commutation formulae:

[H̃ , Q̃] = P̃ +
h̃(ỹ, x̃)

b
, [H̃ , P̃ ] = −�2Q̃, [H̃ , h̃] = 0, (15)

so that the quantities Q̃, P̃ and h̃ evolve as follows under the flow induced by the �-modified
Hamiltonian H̃ (p̃, q̃;�), see (13):

˙̃Q = P̃ +
h̃(ỹ, x̃)

b
, ˙̃P = −�2Q̃, ˙̃h = 0, (16)

entailing

Q̃(t) = Q̃(0) cos(�t) + ˙̃Q(0)
sin(�t)

�
, (17a)

P̃ (t) = P̃ (0) cos(�t) + ˙̃P(0)
sin(�t)

�
+

h̃[ỹ(0), x̃(0)]

b
[cos(�t) − 1], (17b)

h̃[ỹ(t), x̃(t)] = h̃[ỹ(0), x̃(0)]. (17c)

It is moreover plain that the total momentum P̃ and the center-of-mass coordinate Q̃ Poisson-
commute with the relative-motion momenta and coordinates ỹn and x̃n hence also with any
function of these variables,

[P̃ , x̃n] = [P̃ , ỹn] = [P̃ , h̃] = [Q̃, x̃n] = [Q̃, ỹn] = [Q̃, h̃] = 0; (18)

hence, the evolution equations of the relative-motion coordinates and momenta x̃n and ỹn

under the flow induced by the �-modified Hamiltonian H̃ (p̃, q̃;�) read

˙̃xn = 1

b

[
P̃ +

h̃(ỹ, x̃)

b

]
∂h̃(ỹ, x̃)

∂ỹn

=
˙̃Q

b

∂h̃(ỹ, x̃)

∂ỹn

, (19a)

˙̃yn = −1

b

[
P̃ +

h̃(ỹ, x̃)

b

]
∂h̃(ỹ, x̃)

∂x̃n

= −
˙̃Q

b

∂h̃(ỹ, x̃)

∂x̃n

, (19b)

namely, via (17) and (19),

˙̃xn = C cos[�(t − t0)]
∂h̃(ỹ, x̃)

∂ỹn

, (20a)

˙̃yn = −C cos[�(t − t0)]
∂h̃(ỹ, x̃)

∂x̃n

, (20b)

where

C =
√

2H̃

b
, sin(�t0) = −�Q̃(0)

bC
= −�Q̃(0)√

2H̃
. (20c)

It is now crucial to observe—by comparing these evolution equations with (12)—that it
is justified to set

x̃n(t) = xn(t̃), ỹn(t) = yn(t̃), (21a)
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with

t̃ = C
sin[�(t − t0)]

�
= Q̃(t)

b
. (21b)

Here, t0 is defined mod(2π/�) by (20c); the coordinates and momenta xn(t̃) and yn(t̃) evolve
as functions of t̃ according to the original flow yielded by the Hamiltonian H(p, q), see (12),
and are uniquely identified by ‘initial’ data assigned at

t̃0 = Q̃(0)

b
= CQ̃(0)√

2H̃
, (21c)

according to the following prescription:

xn(t̃0) = x̃n(0), yn(t̃0) = ỹn(0), (21d)

where x̃n(0) and ỹn(0) are the initial data for the relative-motion dynamics induced by the �-
modified Hamiltonian H̃ (p̃, q̃;�). In this manner, the dynamics of the canonical coordinate
and momenta q̃n(t) and p̃n(t) evolving according to our �-modified Hamiltonian H̃ (p̃, q̃;�),
see (13), is finally obtained via (14b) and (17) respectively. It is now plain that this dynamics
is isochronous with period T, see (14b), (17) and (21); note that the time evolution of the
coordinates xn(t̃) and yn(t̃) is uniquely well defined for all real time, see (12), unless it runs
into singularities, which should not be the case for physically sound models, and in any case
should only happen exceptionally.

2.3. The � = 0 limit and the behavior of the isochronous system over time scales much
shorter than T

It is plain that, when � vanishes, the �-modified Hamiltonian H̃ (p̃, q̃;�), see (13), does
not quite reduce to the unmodified Hamiltonian H(p, q), see (2), but it is also clear that the
dynamics yielded by the Hamiltonian H̃ (p̃, q̃; 0) differs only marginally from that yielded by
the original Hamiltonian H(p, q). To illustrate this point we now display the version that the
most relevant formulae written above take when � vanishes, � = 0. Let us consider firstly
the evolution (see (17) and (16)) of the center of mass Q̃ and the total momentum P̃ :

Q̃(t) = Q̃(0) +

[
P̃ (0) +

h̃[ỹ(0), x̃(0)]

b

]
t, P̃ (t) = P̃ (0), (22a)

to be compared with the analogous evolution yielded by the Hamiltonian H(p, q),

Q(t) = Q(0) +
P(0)

N
t, P (t) = P(0). (22b)

Next, let us compare the evolution of the relative-motion variables x̃n(t) and ỹn(t). The
relevant formula is of course always (21a), but now with (21b) replaced by (see (20c))

t̃ = Ct +
Q̃(0)

b
. (23)

These formulae confirm the assertion that the dynamics yielded by the Hamiltonian
H̃ (p̃, q̃; 0) differs only marginally from that yielded by the original Hamiltonian H(p, q).

In fact an analogous relationship—entailing that t̃ on a sufficiently short time scale varies
linearly in t—holds generally, since in the neighborhood of any time t̄—except when ˙̃Q(t̄)

vanishes—

t̃ (t) = Q̃(t̄) + ˙̃Q(t̄)(t − t̄ )

b
+ O[(t − t̄ )2]. (24)
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One therefore finds that throughout the time evolution, the �-modified dynamics differs from
the unmodified one solely by a time rescaling—by a possibly negative coefficient—and by a
time shift. The coefficient and the shift are time independent over a time scale much smaller
than the isochrony period T = 2π/�, but vary periodically with period T, see (21b). A
peculiar state of affairs arises, however, whenever ˙̃Q(t) vanishes, namely when dt̃/dt changes
its sign: this of course happens twice within every time period T, see (21b), this being in fact
a consequence of the periodicity of t̃ (t), which itself is the cause of the isochrony. These
aspects are apparent in figures 1 and 2.

2.4. Transient chaos

It is interesting to speculate on the application of this �-modification technique to any
Hamiltonian describing a translation-invariant many-body problem featuring, in its center-
of-mass system, chaotic motions with a natural time scale TC. Then—provided that the
constant � is assigned so that the isochrony period T , see (1), is much larger than this time
scale, T � TC—the �-modified problem shall exhibit some kind of chaotic behavior for quite
some time before the isochronous character of all its motions takes over, causing thereafter a
recurrent evolution. This phenomenology—qualitative rather than quantitative as it necessarily
is, since a precise definition of chaoticity requires generally that a system displaying it be
observed for infinite time—is nevertheless quite remarkable. A more detailed analysis of this
phenomenology—including numerical investigations—is postponed to a separate paper.

2.5. More general Hamiltonians

All the formulae written above are appropriate to the one-dimensional N-body problem with
equal mass particles. These restrictions have been imposed merely for the sake of simplicity:
the alert reader will have no difficulty to extend the treatment—if need be—to many-body
problems with particles having different masses and moving in higher dimensional space.
Of course, in such a case, there is an ample choice of the collective variables playing a role
analogous to that played above by the total momentum and the center-of-mass coordinate; for
instance, in a multidimensional context, any component of the vectors �P and �Q representing
the total momentum and the center-of-mass coordinate could be used, or, not to spoil rotation
invariance, one could replace, in the definition (13a) of the �-modified Hamiltonian, P with

�P · �Q/

√
�Q · �Q and Q2 with �Q · �Q.

We now show that the technique of �-modification can be applied to quite general
Hamiltonians H(p, q), provided they allow the definition of a collective quantity �(p, q)

satisfying the Poisson bracket formula

[H(p, q),�(p, q)] = 1, (25a)

so that this variable �(p, q) is canonically conjugated to the Hamiltonian H(p, q) and
therefore evolves, under the flow induced by this Hamiltonian—a flow we find convenient
to characterize, as above, via the independent variable τ—according to the formula

�′ = 1, (25b)

where the appended prime denotes of course total differentiation with respect to this
independent variable τ (performed via the dependence from this variable τ of the canonical
variables p and q). Note that the formula (25a) identifies �(p, q) up to the addition of any
function of the canonical variables that Poisson-commutes with the Hamiltonian H(p, q),
namely that it is a constant of motion under the flow induced by this Hamiltonian. Then
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an �-modified Hamiltonian yielding entirely isochronous motions—or at least entailing that
2N −1 functionally independent functions of the canonical variables qn(t) and pn(t) all evolve
periodically with period T = 2π/�; see below—reads

H̃ (p̃, q̃;�) = 1
2 {B−2[H(p̃, q̃)]2 + B2�2[�(p̃, q̃)]2}, (25c)

provided the resulting dynamics does not run into a singularity within a time T = 2π/�.
The constant B is introduced here to adjust the dimensions; to do so it must of course be,
dimensionally, a momentum.

An example of the effectiveness of this rule is provided by our previous treatment,
corresponding to the assignment H = B(P + h/b) and � = Q/B, see (13a) and (25c).
On the other hand, an example of ineffective assignment is provided by the one degree-of-
freedom �-modified Hamiltonian

H̃ (p̃, q̃;�) = 1

2

(
p̃4

4B2
+

B2�2q̃2

p̃2

)
, (26a)

which corresponds to (25c) with

H(p, q) = p2

2
, �(p, q) = q

p
. (26b)

Indeed this �-modified Hamiltonian, (26a), is easily seen to yield the equation of motion

Ḧ + �2H = 0, (26c)

entailing

H(t) = H(0) cos(�t) + Ḣ (0)
sin(�t)

�
= A cos(�t + α), (26d)

which is clearly incompatible with the positivity of H, see its definition (26b).
To our knowledge, there do not exist general criteria for the absence of such singularities.

This potential difficulty should therefore be investigated on a case-by-case basis.
To prove the result stated above, we make the following elementary remark: through each

phase-space point p, q goes one, and only one, orbit of H(p, q). Due to the basic property of
� to always increase linearly in τ along all orbits of H in phase space (see (25a)), there is one
and only one point η(p, q), ξ(p, q) on that orbit such that

�(η, ξ) = 0. (27)

Hence to every phase-space point p, q (identified by 2N scalar coordinates) there correspond
uniquely the quantities η(p, q), ξ(p, q) and �(p, q), and the converse is also true, namely
to assigned values (in phase space) of the quantities η, ξ and �—with the latter satisfying
the constraint (27)—there correspond uniquely quantities p, q (these amount to 2N scalar
coordinates, while the 2N + 1 quantities η, ξ and � are constrained by the single scalar
condition (27); thus the numbers of independent scalar coordinates match). Hence in the
following we can consider at our convenience, as dependent variables evolving under the
relevant dynamics, either the variables p, q or the variables η, ξ and �, on the understanding
that there exists a one-to-one transformation among these two sets of variables. We now note
that, since the phase-space point η, ξ obviously does not vary as p = p(τ), q = q(τ) go
through the orbit, these quantities η and ξ are in fact integrals of the motion induced by the
Hamiltonian H; hence they Poisson-commute with H,

[H, η] = [H, ξ ] = 0. (28)

Furthermore, one observes that there holds the Poisson-commutation relations

[H(p, q), [ξ(p, q),�(p, q)]] = [H(p, q), [η(p, q),�(p, q)]] = 0, (29)
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which follow from the observation that the other two terms in the corresponding Jacobi
identities vanish trivially, thanks to (25a) and (28). This suggests introducing the quantities

F(η, ξ) = [ξ(p, q),�(p, q)], G(η, ξ) = [η(p, q),�(p, q)], (30a)

which then obviously Poisson-commute with H (see (29)):

[F,H ] = [G,H ] = 0. (30b)

Note that this fact entails that, as already anticipated by the notation used above, these quantities
depend on the coordinates ξ and η, which indeed Poisson-commute with H, see (28), but are
independent of �, which does not commute with H, see (25a). This fact plays a crucial role,
see below.

Let us now examine the dynamics induced by the �-modified Hamiltonian H̃ , see (25c).
Clearly under this evolution—now characterized by the independent variable t (‘time’)—the
quantities H and � evolve respectively as the momentum and coordinate of a one-dimensional
standard harmonic oscillator with circular frequency �. Indeed, (25c) and (25a) entail

�̇ = [H̃ ,�] = B−2H, Ḣ = [H̃ ,H ] = −B2�2�; (31a)

hence

�̈ + �2� = Ḧ + �2H = 0, (31b)

and hence

�(t) = �(0) cos(�t) +
H(0) sin(�t)

B2�
= A cos[�(t − t0)], (32a)

H(t) = H(0) cos(�t) − B2�(0)� sin(�t) = AB2� sin[�(t − t0)], (32b)

A2 = [�(0)]2 +

[
H(0)

B2�

]2

, sin(ωt0) = − H(0)

AB2�
. (32c)

It is therefore plain that these quantities evolve now periodically, with period T = 2π/�.

To characterize the rest of the dynamics induced by the �-modified Hamiltonian H̃ , there
remains to investigate the motion of the coordinates ξ̃ and η̃, where the superimposed tildes
have now been added to emphasize that these quantities evolve now according to the flow
induced by the �-modified Hamiltonian H̃ . The relevant equations of motion read (see (25c)
and (28), as well as (31a) and (32a))

˙̃ξ = −B2�2�F(η̃, ξ̃ ) = ḢF (η̃, ξ̃ ) = −AB2�2 cos[�(t − t0)]F(η̃, ξ̃ ), (33a)

˙̃η = −B2�2�G(η̃, ξ̃ ) = ḢG(η̃, ξ̃ ) = −AB2�2 cos[�(t − t0)]G(η̃, ξ̃ ). (33b)

Here the fact that the quantities F(η̃, ξ̃ ) and G(η̃, ξ̃ ) do not depend on � plays a crucial role,
since it is then clear that this closed system of ODEs entails a periodic evolution—with period
T = 2π/�—of the dependent variables ξ̃ (t) and η̃(t), as demonstrated via the usual trick to
go over, from the independent variable t, to the ‘periodic’ timelike variable t̃ defined now, say,
as follows:

t̃ (t) = sin[�(t − t0)]

�
, ˙̃t = cos[�(t − t0)]. (34)

The only possible difficulty arises if the specific definition of (one or both of) the collective
variables H and � turns out to be incompatible with their periodic evolution (32), or likewise
if the periodic evolutions of the coordinates ξ̃ and η̃ yield an unacceptable evolution of the
original canonical variables q and p. The fact that the first of these possibilities may indeed
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occur is demonstrated by the example detailed above; see (26a) and the treatment following this
equation. As for the second possible difficulty, let us point out that the one-to-one character
of the transformation between the variables p̃, q̃ and the variables η̃, ξ̃ (note that here the
superimposed tildes are unessential, since they only refer to the assumed time evolution of
these variables) implies that this difficulty can only emerge due to singularities in the time
evolution of the system obtained from (33) via the change of the independent variable (34).

In any case this requires, as already indicated above, that some checks be made on a
case-by-case basis. But, aside for the possible emergence of these difficulties, the entirely
isochronous character of the motions yielded by the �-modified Hamiltonian H̃ (p̃, q̃;�), see
(25c), has now been demonstrated.

2.6. A simple example

In this subsection we display, with minimal comments, the findings obtained by applying
our �-modification technique to the very simple Hamiltonian describing a couple of equal
mass one-dimensional particles interacting pairwise with a force proportional to their mutual
distance; when this force is attractive this model corresponds of course, in the center-of-
mass system, to the standard ‘harmonic’ oscillator model. (We write ‘harmonic’ under
inverted commas to emphasize that the entirely isochronous �-modified Hamiltonians yielded
by our technique all yield motions deserving to be called harmonic, inasmuch as they are
characterized by just a single frequency of oscillation; in the case of many-body problems,
the term ‘nonlinear harmonic oscillators’ [7] is perhaps the most appropriate to describe the
corresponding dynamics . . . )

The original Hamiltonian:

H(p1, p2; q1, q2) = 1

2

(
p2

1 + p2
2

)
+

ω2

4
(q1 − q2)

2. (35)

Some standard definitions and related formulae:

Q = q1 + q2

2
, P = p1 + p2; (36)

x1 = q1 − Q = q1 − q2

2
, x2 = q2 − Q = q2 − q1

2
, x1 + x2 = 0, (37a)

y1 = p1 − P

2
= p1 − p2

2
, y2 = p2 − P

2
= p2 − p1

2
, y1 + y2 = 0; (37b)

h(y1, y2; x1, x2) = 1

2

(
y2

1 + y2
2

)
+

ω2

4
(x1 − x2)

2, (38a)

H(p1, p2; q1, q2) = 1

4
P 2 + h(y1, y2; x1, x2); (38b)

Q′ = 1

2
P, P ′ = 0, (39a)

Q(τ) = Q(τ0) +
1

2
P(τ0)(τ − τ0), P (τ) = P(τ0); (39b)

x ′
n = yn, y ′

n = −ω2

2
(xn − xn+1), n = 1, 2 mod(2), (40a)
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xn(τ ) = xn(τ0) cos[ω(τ − τ0)] + yn(τ0)
sin[ω(τ − τ0)]

ω
, n = 1, 2, (40b)

yn(τ ) = yn(τ0) cos[ω(τ − τ0)] − ωxn(τ0) sin[ω(τ − τ0)], n = 1, 2. (40c)

The �-modified Hamiltonian:

H̃ (p̃1, p̃2; q̃1, q̃2;�) = 1

2

{[
P̃ +

h̃(ỹ1, ỹ2; x̃1, x̃2)

b

]2

+ �2Q̃2

}
; (41)

Q̃ = q̃1 + q̃2

2
, P̃ = p̃1 + p̃2; (42)

x̃1 = q̃1 − Q̃ = q̃1 − q̃2

2
, x̃2 = q̃2 − Q̃ = q̃2 − q̃1

2
, x̃1 + x̃2 = 0, (43a)

ỹ1 = p̃1 − P̃

2
= p̃1 − p̃2

2
, ỹ2 = p̃2 − P̃

2
= p̃2 − p̃1

2
, ỹ1 + ỹ2 = 0; (43b)

h̃(ỹ1, ỹ2; x̃1, x̃2) = 1

2

(
ỹ2

1 + ỹ2
2

)
+

ω2

4
(x̃1 − x̃2)

2; (44a)

H̃ (p̃1, p̃2; q̃1, q̃2;�) = 1

2

{ [
p̃1 + p̃2 +

(p̃1 − p̃2)
2

4b

]2

+
ω2

2b

[
p̃1 + p̃2 +

(p̃1 − p̃2)
2

4b

]
(q̃1 − q̃2)

2 +

(
ω2

4b

)2

(q̃1 − q̃2)
4 +

�2

4
(q̃1 + q̃2)

2

}
.

(45)

The �-modified equations of motions: see (16) and (19) yielding

˙̃xn = 1

b

[
P̃ +

h̃(ỹ1, ỹ2; x̃1, x̃2)

b

]
ỹn, n = 1, 2, (46a)

˙̃yn = −ω2

2b

[
P̃ +

h̃(ỹ1, ỹ2; x̃1, x̃2)

b

]
(x̃n − x̃n), n = 1, 2mod(2). (46b)

The isochronous motions yielded by the �-modified Hamiltonian H̃ (p̃1, p̃2; q̃1, q̃2;�): see
(17), and (21) yielding (40b) and (40c), namely (see (21b))

x̃n(t) = x̃n(0) cos

{
ωC

sin[�(t − t0)] + sin(�t0)

�

}

+
ỹn(0)

ω
sin

{
ωC

sin[�(t − t0)] + sin(�t0)

�

}
, n = 1, 2, (47a)

ỹn(t) = ỹn(0) cos

{
ωC

sin[�(t − t0)] + sin(�t0)

�

}

−ωx̃n(0) sin

{
ωC

sin[�(t − t0)] + sin(�t0)

�

}
, n = 1, 2, (47b)

with C and t0 defined in terms of the initial data by (20c).
The entirely isochronous character of this motion, with period T = 2π/�, is evident (see

(43a), (17) and (47)), and note that this outcome obtains even if ω is purely imaginary, ω = iα
with α real, in which case the original Hamiltonian H and the �-modified Hamiltonian H̃ ,

and as well of course the corresponding solutions, see (43a), (17) and (47), are nevertheless
all real.
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Figure 1. Graph (over one time period) of x̃n(t), see (47a), for x̃n(0) = 0, ỹn(0) = ω = 40� =
2π, � = π/20, C = 1, t0 = 0. Note the overall periodicity with period T = 2π/� = 40, the large
regions where the behavior is nearly periodic with the original period 2π/ω = 1 of the solutions
of the unmodified Hamiltonian (35), and the transition regions around the times t = 10 and t = 30
when ˙̃t(t) vanishes.

Figure 2. Graph (over two time periods) of x̃n(t), see (47a), for x̃n(0) = 0, ỹn(0) = 2π, ω =
4i� = 2π i, � = π/2, C = 1, t0 = 0. Note the overall periodicity with period T = 2π/� = 4,

the regions where the time evolution resembles the original sin(ωt)/i = sinh(2πt) behavior of the
corresponding solution of the unmodified Hamiltonian (35), and the transition regions around the
times t = −1, 1, 3, 5, 7 when ˙̃t(t) vanishes.

3. The quantum case

In this section we tersely show why, in a quantal context, the Hamiltonian H̃ (p̃, q̃;�), see
(13), features an (infinitely degenerate) equispaced spectrum with spacing ��.

This spectrum consists of the eigenvalues Ek of the stationary Schrödinger equation:

1

2

{[
−i�

∂

∂Z
+

λ

b

]2

+ �2Z2

}
ψk(Z; λ) = Ekψk(Z; λ), (48a)
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obtained from expression (13) of the Hamiltonian H̃ (p̃, q̃;�) via the standard quantization
rule

P̃ �⇒ −i�
∂

∂Z
, Q̃ �⇒ Z, (48b)

and by identifying λ as an eigenvalue of the quantized version of the relative-motion
Hamiltonian h̃(ỹ, x̃), see (9a). Indeed this Schrödinger equation is obtained by assuming the
eigenfunctions of the quantized version of the Hamiltonian H̃ (p̃, q̃;�) factor into the product
of an eigenfunction, ψk(Z; λ), depending on the variable Z and on which acts the differential
operator ∂/∂Z (see (48a)), and of the eigenfunction corresponding to the eigenvalue λ of
the quantized version of the relative-motion Hamiltonian h̃(ỹ, x̃). The justification for this
factorization is in the commutativity of the operators representing the quantal versions of the
canonical variables P̃ and Q̃ with the operator representing the quantal version of the relative-
motion Hamiltonian h̃(ỹ, x̃)—a commutativity reflecting the Poisson commutativity of the
corresponding quantities in the classical context, see (18). It is now plain that the Schrödinger
equation (48a) features the spectrum

Ek = ��
(
k + 1

2

)
, k = 0, 1, 2, . . . , (49a)

with the corresponding eigenfunctions reading

ψk(Z; λ) = exp

(
iλz

b
√

��
− z2

2

)
Hk(z), z = Z

√
�

�
, (49b)

where Hk(z) denotes the standard Hermite polynomial of order k.
This spectrum, (49a), is of course equispaced with spacing ��, and it is infinitely

degenerate inasmuch as it does not feature any dependence on the eigenvalues λ.

4. Outlook

It has been said that scientific progress consists in turning surprising findings into obvious
truths. The results presented in this paper might be seen as belonging to this pattern. It was
indeed our experience when describing these findings to competent colleagues to be initially
met by widespread skepticism: that such a vast class of (autonomous) Hamiltonians could
so readily and generally be �-modified obtaining thereby new (autonomous) Hamiltonians
yielding entirely isochronous motions appeared queer indeed hard to believe, even more so
when the original Hamiltonians are known to yield chaotic motions; hence the corresponding
�-modified Hamiltonians should feature the phenomenology of transient chaos, as outlined
above. But of course once the mechanism underlying all this was understood and
internalized—namely, the fact that, via a tricky transformation, time itself was effectively
made periodic—the origin of this remarkable phenomenology became transparent and its
manifestations essentially obvious. We nevertheless deem that these findings deserve further
investigation; in particular we soon plan to exhibit further instances of this phenomenology for
systems of several particles interacting via ‘realistic’ potentials, when issues of reversibility
become important. We also plan to investigate the statistical mechanics and thermodynamics
of macroscopic systems described by �-modified Hamiltonians yielding entirely isochronous
motions, while we will instead refrain from proposing pseudo-philosophical interpretations of
our �-modified Hamiltonians as describing ever-recurring universes (but let us not forget that
metrics yielding closed timelike geodesics are indeed predicted in some black hole models,
see for instance [8]).
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